\(\int \frac {1}{(d+e x)^{3/2} \sqrt {b x+c x^2}} \, dx\) [411]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 146 \[ \int \frac {1}{(d+e x)^{3/2} \sqrt {b x+c x^2}} \, dx=-\frac {2 e \sqrt {b x+c x^2}}{d (c d-b e) \sqrt {d+e x}}+\frac {2 \sqrt {-b} \sqrt {c} \sqrt {x} \sqrt {1+\frac {c x}{b}} \sqrt {d+e x} E\left (\arcsin \left (\frac {\sqrt {c} \sqrt {x}}{\sqrt {-b}}\right )|\frac {b e}{c d}\right )}{d (c d-b e) \sqrt {1+\frac {e x}{d}} \sqrt {b x+c x^2}} \]

[Out]

2*EllipticE(c^(1/2)*x^(1/2)/(-b)^(1/2),(b*e/c/d)^(1/2))*(-b)^(1/2)*c^(1/2)*x^(1/2)*(1+c*x/b)^(1/2)*(e*x+d)^(1/
2)/d/(-b*e+c*d)/(1+e*x/d)^(1/2)/(c*x^2+b*x)^(1/2)-2*e*(c*x^2+b*x)^(1/2)/d/(-b*e+c*d)/(e*x+d)^(1/2)

Rubi [A] (verified)

Time = 0.06 (sec) , antiderivative size = 146, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {758, 21, 729, 113, 111} \[ \int \frac {1}{(d+e x)^{3/2} \sqrt {b x+c x^2}} \, dx=\frac {2 \sqrt {-b} \sqrt {c} \sqrt {x} \sqrt {\frac {c x}{b}+1} \sqrt {d+e x} E\left (\arcsin \left (\frac {\sqrt {c} \sqrt {x}}{\sqrt {-b}}\right )|\frac {b e}{c d}\right )}{d \sqrt {b x+c x^2} \sqrt {\frac {e x}{d}+1} (c d-b e)}-\frac {2 e \sqrt {b x+c x^2}}{d \sqrt {d+e x} (c d-b e)} \]

[In]

Int[1/((d + e*x)^(3/2)*Sqrt[b*x + c*x^2]),x]

[Out]

(-2*e*Sqrt[b*x + c*x^2])/(d*(c*d - b*e)*Sqrt[d + e*x]) + (2*Sqrt[-b]*Sqrt[c]*Sqrt[x]*Sqrt[1 + (c*x)/b]*Sqrt[d
+ e*x]*EllipticE[ArcSin[(Sqrt[c]*Sqrt[x])/Sqrt[-b]], (b*e)/(c*d)])/(d*(c*d - b*e)*Sqrt[1 + (e*x)/d]*Sqrt[b*x +
 c*x^2])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 111

Int[Sqrt[(e_) + (f_.)*(x_)]/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[2*(Sqrt[e]/b)*Rt[-b/
d, 2]*EllipticE[ArcSin[Sqrt[b*x]/(Sqrt[c]*Rt[-b/d, 2])], c*(f/(d*e))], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[
d*e - c*f, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !LtQ[-b/d, 0]

Rule 113

Int[Sqrt[(e_) + (f_.)*(x_)]/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Dist[Sqrt[e + f*x]*(Sqrt[
1 + d*(x/c)]/(Sqrt[c + d*x]*Sqrt[1 + f*(x/e)])), Int[Sqrt[1 + f*(x/e)]/(Sqrt[b*x]*Sqrt[1 + d*(x/c)]), x], x] /
; FreeQ[{b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] &&  !(GtQ[c, 0] && GtQ[e, 0])

Rule 729

Int[((d_.) + (e_.)*(x_))^(m_)/Sqrt[(b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[x]*(Sqrt[b + c*x]/Sqrt[b
*x + c*x^2]), Int[(d + e*x)^m/(Sqrt[x]*Sqrt[b + c*x]), x], x] /; FreeQ[{b, c, d, e}, x] && NeQ[c*d - b*e, 0] &
& NeQ[2*c*d - b*e, 0] && EqQ[m^2, 1/4]

Rule 758

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^(m + 1)*
((a + b*x + c*x^2)^(p + 1)/((m + 1)*(c*d^2 - b*d*e + a*e^2))), x] + Dist[1/((m + 1)*(c*d^2 - b*d*e + a*e^2)),
Int[(d + e*x)^(m + 1)*Simp[c*d*(m + 1) - b*e*(m + p + 2) - c*e*(m + 2*p + 3)*x, x]*(a + b*x + c*x^2)^p, x], x]
 /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e
, 0] && NeQ[m, -1] && ((LtQ[m, -1] && IntQuadraticQ[a, b, c, d, e, m, p, x]) || (SumSimplerQ[m, 1] && IntegerQ
[p]) || ILtQ[Simplify[m + 2*p + 3], 0])

Rubi steps \begin{align*} \text {integral}& = -\frac {2 e \sqrt {b x+c x^2}}{d (c d-b e) \sqrt {d+e x}}-\frac {2 \int \frac {-\frac {c d}{2}-\frac {c e x}{2}}{\sqrt {d+e x} \sqrt {b x+c x^2}} \, dx}{d (c d-b e)} \\ & = -\frac {2 e \sqrt {b x+c x^2}}{d (c d-b e) \sqrt {d+e x}}+\frac {c \int \frac {\sqrt {d+e x}}{\sqrt {b x+c x^2}} \, dx}{d (c d-b e)} \\ & = -\frac {2 e \sqrt {b x+c x^2}}{d (c d-b e) \sqrt {d+e x}}+\frac {\left (c \sqrt {x} \sqrt {b+c x}\right ) \int \frac {\sqrt {d+e x}}{\sqrt {x} \sqrt {b+c x}} \, dx}{d (c d-b e) \sqrt {b x+c x^2}} \\ & = -\frac {2 e \sqrt {b x+c x^2}}{d (c d-b e) \sqrt {d+e x}}+\frac {\left (c \sqrt {x} \sqrt {1+\frac {c x}{b}} \sqrt {d+e x}\right ) \int \frac {\sqrt {1+\frac {e x}{d}}}{\sqrt {x} \sqrt {1+\frac {c x}{b}}} \, dx}{d (c d-b e) \sqrt {1+\frac {e x}{d}} \sqrt {b x+c x^2}} \\ & = -\frac {2 e \sqrt {b x+c x^2}}{d (c d-b e) \sqrt {d+e x}}+\frac {2 \sqrt {-b} \sqrt {c} \sqrt {x} \sqrt {1+\frac {c x}{b}} \sqrt {d+e x} E\left (\sin ^{-1}\left (\frac {\sqrt {c} \sqrt {x}}{\sqrt {-b}}\right )|\frac {b e}{c d}\right )}{d (c d-b e) \sqrt {1+\frac {e x}{d}} \sqrt {b x+c x^2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 5.38 (sec) , antiderivative size = 127, normalized size of antiderivative = 0.87 \[ \int \frac {1}{(d+e x)^{3/2} \sqrt {b x+c x^2}} \, dx=\frac {2 \sqrt {x (b+c x)} \left (d \sqrt {1+\frac {b}{c x}}+\sqrt {-\frac {d}{e}} e \sqrt {1+\frac {d}{e x}} \sqrt {x} E\left (\arcsin \left (\frac {\sqrt {-\frac {d}{e}}}{\sqrt {x}}\right )|\frac {b e}{c d}\right )\right )}{d (c d-b e) \sqrt {1+\frac {b}{c x}} x \sqrt {d+e x}} \]

[In]

Integrate[1/((d + e*x)^(3/2)*Sqrt[b*x + c*x^2]),x]

[Out]

(2*Sqrt[x*(b + c*x)]*(d*Sqrt[1 + b/(c*x)] + Sqrt[-(d/e)]*e*Sqrt[1 + d/(e*x)]*Sqrt[x]*EllipticE[ArcSin[Sqrt[-(d
/e)]/Sqrt[x]], (b*e)/(c*d)]))/(d*(c*d - b*e)*Sqrt[1 + b/(c*x)]*x*Sqrt[d + e*x])

Maple [A] (verified)

Time = 2.32 (sec) , antiderivative size = 216, normalized size of antiderivative = 1.48

method result size
default \(\frac {2 \left (\sqrt {\frac {c x +b}{b}}\, \sqrt {-\frac {c \left (e x +d \right )}{b e -c d}}\, \sqrt {-\frac {c x}{b}}\, E\left (\sqrt {\frac {c x +b}{b}}, \sqrt {\frac {b e}{b e -c d}}\right ) b^{2} e -\sqrt {\frac {c x +b}{b}}\, \sqrt {-\frac {c \left (e x +d \right )}{b e -c d}}\, \sqrt {-\frac {c x}{b}}\, E\left (\sqrt {\frac {c x +b}{b}}, \sqrt {\frac {b e}{b e -c d}}\right ) b c d +c^{2} e \,x^{2}+b c e x \right ) \sqrt {x \left (c x +b \right )}\, \sqrt {e x +d}}{d c \left (b e -c d \right ) x \left (c e \,x^{2}+b e x +c d x +b d \right )}\) \(216\)
elliptic \(\frac {\sqrt {x \left (e x +d \right ) \left (c x +b \right )}\, \left (\frac {2 c e \,x^{2}+2 b e x}{d \left (b e -c d \right ) \sqrt {\left (x +\frac {d}{e}\right ) \left (c e \,x^{2}+b e x \right )}}+\frac {2 \left (\frac {1}{d}-\frac {b e}{d \left (b e -c d \right )}\right ) b \sqrt {\frac {\left (\frac {b}{c}+x \right ) c}{b}}\, \sqrt {\frac {x +\frac {d}{e}}{-\frac {b}{c}+\frac {d}{e}}}\, \sqrt {-\frac {c x}{b}}\, F\left (\sqrt {\frac {\left (\frac {b}{c}+x \right ) c}{b}}, \sqrt {-\frac {b}{c \left (-\frac {b}{c}+\frac {d}{e}\right )}}\right )}{c \sqrt {c e \,x^{3}+b e \,x^{2}+c d \,x^{2}+b d x}}-\frac {2 e b \sqrt {\frac {\left (\frac {b}{c}+x \right ) c}{b}}\, \sqrt {\frac {x +\frac {d}{e}}{-\frac {b}{c}+\frac {d}{e}}}\, \sqrt {-\frac {c x}{b}}\, \left (\left (-\frac {b}{c}+\frac {d}{e}\right ) E\left (\sqrt {\frac {\left (\frac {b}{c}+x \right ) c}{b}}, \sqrt {-\frac {b}{c \left (-\frac {b}{c}+\frac {d}{e}\right )}}\right )-\frac {d F\left (\sqrt {\frac {\left (\frac {b}{c}+x \right ) c}{b}}, \sqrt {-\frac {b}{c \left (-\frac {b}{c}+\frac {d}{e}\right )}}\right )}{e}\right )}{d \left (b e -c d \right ) \sqrt {c e \,x^{3}+b e \,x^{2}+c d \,x^{2}+b d x}}\right )}{\sqrt {x \left (c x +b \right )}\, \sqrt {e x +d}}\) \(399\)

[In]

int(1/(e*x+d)^(3/2)/(c*x^2+b*x)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2*(((c*x+b)/b)^(1/2)*(-c*(e*x+d)/(b*e-c*d))^(1/2)*(-c*x/b)^(1/2)*EllipticE(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(
1/2))*b^2*e-((c*x+b)/b)^(1/2)*(-c*(e*x+d)/(b*e-c*d))^(1/2)*(-c*x/b)^(1/2)*EllipticE(((c*x+b)/b)^(1/2),(b*e/(b*
e-c*d))^(1/2))*b*c*d+c^2*e*x^2+b*c*e*x)*(x*(c*x+b))^(1/2)*(e*x+d)^(1/2)/d/c/(b*e-c*d)/x/(c*e*x^2+b*e*x+c*d*x+b
*d)

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 385, normalized size of antiderivative = 2.64 \[ \int \frac {1}{(d+e x)^{3/2} \sqrt {b x+c x^2}} \, dx=-\frac {2 \, {\left (3 \, \sqrt {c x^{2} + b x} \sqrt {e x + d} c e^{2} - {\left (2 \, c d^{2} - b d e + {\left (2 \, c d e - b e^{2}\right )} x\right )} \sqrt {c e} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c^{2} d^{2} - b c d e + b^{2} e^{2}\right )}}{3 \, c^{2} e^{2}}, -\frac {4 \, {\left (2 \, c^{3} d^{3} - 3 \, b c^{2} d^{2} e - 3 \, b^{2} c d e^{2} + 2 \, b^{3} e^{3}\right )}}{27 \, c^{3} e^{3}}, \frac {3 \, c e x + c d + b e}{3 \, c e}\right ) + 3 \, {\left (c e^{2} x + c d e\right )} \sqrt {c e} {\rm weierstrassZeta}\left (\frac {4 \, {\left (c^{2} d^{2} - b c d e + b^{2} e^{2}\right )}}{3 \, c^{2} e^{2}}, -\frac {4 \, {\left (2 \, c^{3} d^{3} - 3 \, b c^{2} d^{2} e - 3 \, b^{2} c d e^{2} + 2 \, b^{3} e^{3}\right )}}{27 \, c^{3} e^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c^{2} d^{2} - b c d e + b^{2} e^{2}\right )}}{3 \, c^{2} e^{2}}, -\frac {4 \, {\left (2 \, c^{3} d^{3} - 3 \, b c^{2} d^{2} e - 3 \, b^{2} c d e^{2} + 2 \, b^{3} e^{3}\right )}}{27 \, c^{3} e^{3}}, \frac {3 \, c e x + c d + b e}{3 \, c e}\right )\right )\right )}}{3 \, {\left (c^{2} d^{3} e - b c d^{2} e^{2} + {\left (c^{2} d^{2} e^{2} - b c d e^{3}\right )} x\right )}} \]

[In]

integrate(1/(e*x+d)^(3/2)/(c*x^2+b*x)^(1/2),x, algorithm="fricas")

[Out]

-2/3*(3*sqrt(c*x^2 + b*x)*sqrt(e*x + d)*c*e^2 - (2*c*d^2 - b*d*e + (2*c*d*e - b*e^2)*x)*sqrt(c*e)*weierstrassP
Inverse(4/3*(c^2*d^2 - b*c*d*e + b^2*e^2)/(c^2*e^2), -4/27*(2*c^3*d^3 - 3*b*c^2*d^2*e - 3*b^2*c*d*e^2 + 2*b^3*
e^3)/(c^3*e^3), 1/3*(3*c*e*x + c*d + b*e)/(c*e)) + 3*(c*e^2*x + c*d*e)*sqrt(c*e)*weierstrassZeta(4/3*(c^2*d^2
- b*c*d*e + b^2*e^2)/(c^2*e^2), -4/27*(2*c^3*d^3 - 3*b*c^2*d^2*e - 3*b^2*c*d*e^2 + 2*b^3*e^3)/(c^3*e^3), weier
strassPInverse(4/3*(c^2*d^2 - b*c*d*e + b^2*e^2)/(c^2*e^2), -4/27*(2*c^3*d^3 - 3*b*c^2*d^2*e - 3*b^2*c*d*e^2 +
 2*b^3*e^3)/(c^3*e^3), 1/3*(3*c*e*x + c*d + b*e)/(c*e))))/(c^2*d^3*e - b*c*d^2*e^2 + (c^2*d^2*e^2 - b*c*d*e^3)
*x)

Sympy [F]

\[ \int \frac {1}{(d+e x)^{3/2} \sqrt {b x+c x^2}} \, dx=\int \frac {1}{\sqrt {x \left (b + c x\right )} \left (d + e x\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(1/(e*x+d)**(3/2)/(c*x**2+b*x)**(1/2),x)

[Out]

Integral(1/(sqrt(x*(b + c*x))*(d + e*x)**(3/2)), x)

Maxima [F]

\[ \int \frac {1}{(d+e x)^{3/2} \sqrt {b x+c x^2}} \, dx=\int { \frac {1}{\sqrt {c x^{2} + b x} {\left (e x + d\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(1/(e*x+d)^(3/2)/(c*x^2+b*x)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(c*x^2 + b*x)*(e*x + d)^(3/2)), x)

Giac [F]

\[ \int \frac {1}{(d+e x)^{3/2} \sqrt {b x+c x^2}} \, dx=\int { \frac {1}{\sqrt {c x^{2} + b x} {\left (e x + d\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(1/(e*x+d)^(3/2)/(c*x^2+b*x)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(c*x^2 + b*x)*(e*x + d)^(3/2)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(d+e x)^{3/2} \sqrt {b x+c x^2}} \, dx=\int \frac {1}{\sqrt {c\,x^2+b\,x}\,{\left (d+e\,x\right )}^{3/2}} \,d x \]

[In]

int(1/((b*x + c*x^2)^(1/2)*(d + e*x)^(3/2)),x)

[Out]

int(1/((b*x + c*x^2)^(1/2)*(d + e*x)^(3/2)), x)